Fault-Tolerant Benchmark Applications
Fault-Tolerant Benchmark Applications
This page collects benchmark circuits and experiments for fault-tolerant quantum computing. Each section focuses on a different application family and lists concrete implementations with code parameters, noise / decoder assumptions, and basic performance metrics.
The tables below use the following columns:
- Name – short label for the benchmark instance
- Code (type, parameters) – e.g., surface code
d=3, Steane[[7,1,3]] - Noise / Decoder – noise model and decoding strategy
- Qubits – total physical qubit count (data + ancilla/helper)
- Fidelity – logical success probability or 1 − logical error rate
- GitHub – link to code or configuration
1. Logical Gates
Logical gate benchmarks study encoded single- and two-qubit gates
(e.g., logical X, Z, H, S, T, CNOT) implemented on top of a
quantum error-correcting code. These benchmarks are useful for
comparing different codes, layouts, and decoders under the same physical
noise assumptions.
Benchmark Instances
| Name | Code (type, parameters) | Noise / Decoder | Qubits | Fidelity | GitHub |
|---|---|---|---|---|---|
| Logical CNOT (Surface d=3) | Surface code, rotated lattice, distance d=3 | Depolarizing p=1e-3 (2-qubit), MWPM decoder (PyMatching) | 49 | 0.992 | Link |
| Logical T via MSD (Steane) | Steane code [[7,1,3]] with magic-state distillation |
Biased dephasing p_Z = 2e-3, lookup-table decoder |
35 | 0.985 | Link |
| Repeated Logical Id (Bacon–Shor) | Bacon–Shor code n_x=3, n_z=3 |
Circuit-level depolarizing p=5e-4, belief-propagation decoder | 27 | 0.998 | Link |
Replace
USERNAME/REPO*with your actual repositories or configs.
2. Shor’s Algorithm
Shor’s algorithm factors an integer using modular exponentiation and a quantum Fourier transform (QFT). Fault-tolerant benchmarks typically use small composite numbers (e.g., 15, 21) encoded in QEC codes and focus on the cost and reliability of modular arithmetic plus QFT under realistic noise.
Benchmark Instances
| Name | Code (type, parameters) | Noise / Decoder | Qubits | Fidelity | GitHub |
|---|---|---|---|---|---|
| Shor N = 15 (Logical) | Surface code d=3 for all logical qubits | Circuit-level depolarizing p=1e-3, MWPM decoder | 128 | 0.93 | Link |
| Shor N = 21 (Hybrid Layout) | Mixed surface codes d=3 / d=5 for work registers | Spatially correlated noise (p_2q=1e-3), tensor-network decoder |
256 | 0.89 | Link |
| Shor N = 15 (Color Code) | 2D color code distance d=3 | Biased dephasing (p_Z > p_X), MWPM-style color decoder |
162 | 0.91 | Link |
3. QAOA
The Quantum Approximate Optimization Algorithm (QAOA) is a variational algorithm for combinatorial optimization (e.g., MaxCut, Max-2-SAT). Fault-tolerant QAOA benchmarks emphasize the overhead of implementing parameterized layers at logical level, including logical ZZ and X mixers, and measure how logical error rates affect the final approximation ratio.
Benchmark Instances
| Name | Code (type, parameters) | Noise / Decoder | Qubits | Fidelity | GitHub |
|---|---|---|---|---|---|
| QAOA MaxCut (p = 1, 8 nodes) | Surface code d=3 (one logical per graph vertex) | Depolarizing p=1e-3, MWPM decoder | 96 | 0.95 | Link |
| QAOA MaxCut (p = 2, 12 nodes) | Surface code d=5, lattice-surgery entangling gates | Circuit-level depolarizing p=5e-4, MWPM decoder | 320 | 0.92 | Link |
| QAOA Portfolio Opt. (p = 1) | Steane [[7,1,3]] logical qubits for cost Hamiltonian |
Asymmetric noise (T_1, T_2-derived channels), lookup-table decoder |
70 | 0.90 | Link |
4. Grover’s Algorithm
Grover’s search algorithm provides quadratic speedup for unstructured search. Fault-tolerant Grover benchmarks typically implement an oracle and diffusion operator using logical gates, then measure how many Grover iterations can be performed before logical errors dominate.
Benchmark Instances
| Name | Code (type, parameters) | Noise / Decoder | Qubits | Fidelity | GitHub |
|---|---|---|---|---|---|
| Grover 1-marked item (n = 4) | Surface code d=3, logical oracle via Toffoli synthesis | Depolarizing p=1e-3, MWPM decoder | 80 | 0.96 | Link |
| Grover 1-marked item (n = 6) | Surface code d=5, helper-qubit-heavy ancilla factory | Correlated 2-qubit noise, tensor-network decoder | 240 | 0.93 | Link |
| Grover oracle with QEC-protected data | Bacon–Shor logical data, unencoded ancilla helpers | Amplitude-damping + dephasing, belief-propagation decoder | 112 | 0.90 | Link |
You can:
- Adjust intros to match your own terminology.
- Replace the placeholder repos (
USERNAME/REPO*) with your actual GitHub links. - Add or remove rows in each table as your benchmark suite grows.